

Florida Solar Energy Center • November 1-4, 2005

Development of Nanocrystalline Complex Metal Hydrides for Hydrogen Storage

Principal Investigator: Dr. Fereshteh Ebrahimi Graduate Research Assistant: Sankara Tatiparti

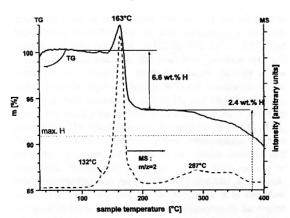
Materials Science and Engineering Department University of Florida, Gainesville, FL

Start Date = January 2005
Planned Completion = December 2006

Florida Solar Energy Center • November 1-4, 2005

Research Goals and Objectives

- The objective of this work is to synthesize nanocrystalline Al-Mg alloys which form complex metal hydrides with excellent volumetric hydrogen capacity, low hydrogenation/dehydrogenation temperature, fast kinetics and reasonable gravimetric storage capacity.
- The approach to meet the objective includes:
 - Use electrodeposition techniques for synthesizing nanocrystalline particles.
 - Apply advanced characterization techniques such as x-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and nanoindentation to characterize the deposits structure.
 - Establish collaboration for the hydrogenation/dehydrogenation characterization.



Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

- Sodium alanate, NaAlH₄ is the state-of-the art complex hydride considered as hydrogen storage medium for fuel cells.
 - Theoretical capacity of 5.5wt% (practical less than 5wt%)
 - Low absorption kinetics
 - Reactive with air and moisture
- Magnesium alanate:
 - Theoretical capacity of 9.3%.
 - Mg(AlH4)2 → MgH2 + 2Al + 3H2 (6.6wt% at 163 °C)
 - Doping with Ti and ball milling reduced the peak temperature to 120°C.

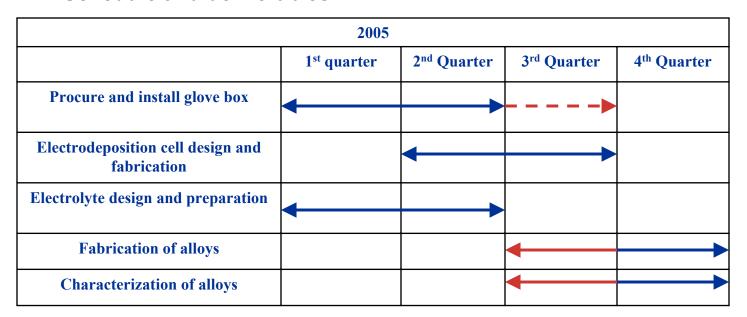
- Synthesis through methathesis reaction between sodium alanate and magnesium chloride.
- No results on kinetics of hydrogen desorption and absorption.

Fichtner M, Fuhr O, Kircher O, "Magnesium alante – a material for reversible hydrogen storage?" J. Alloys and Compounds 356-357:418-422 (2003).

Florida Solar Energy Center • November 1-4, 2005

Relevance to NASA

- Fuel cells are an important part of NASA's future missions.
- Complex hydrides are the most promising source of pure hydrogen for fuel cells.
- There is a need for new materials with high hydrogen capacity, fast kinetics, and low cost.


Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule and Deliverables

Budget

2005 funding: 70K2006 funding: 31K

Schedule and deliverables

Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

- Electrodeposition is a well established industry and therefore up-scaling of the synthesis technology should be achieved easily.
- It is anticipated that the synthesized powder will be transferred to a high pressure hydrogenation chamber to form magnesium alnate.
- The hydride will be used as a source of hydrogen for fuel cells.

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

I. Selection of Electrolyte

 Aqueous based solutions can not be used for deposition of Al or Mg.

Possible Solutions:

- 1. AIX₃ (X=halogen) in TMPAC (tri-methyl-phenyl-amonium)
- 2. AlH₃ in DMSO2 (di-methyl-sulfone)
- 3. AIR₃ (R=Alkyl group) in toluene

After considering different possibilities, we decided that the 3rd option is the best choice.

Florida Solar Energy Center • November 1-4, 2005

Electrolytes based on organometallic complexes

 Typically, Alklai metal halides (MX) and Aluminumtrialkyls (AIR₃) are used to form complexes

$$MX + AIR_3 \rightarrow M[R_3AIX]$$
 (1:1 complex)
 $MX + 2AIR_3 \rightarrow M[R_3AI-X-AIR_3]$ (1:2 complex)

Where, M= Na, K, Rb, Cs R= Methyl (-C $_{3}$), Ethyl (-C $_{2}$ H $_{5}$), propyl (-C $_{3}$ H $_{7}$), etc.

Lehmkuhl H, Mehler K, Landau U "The principles and techniques of electrolytic aluminum deposition and dissolution in Organoaluminum electrolytes" in *Advances in Electrochemical Science and Engineering*, Vol. 3, Ed. H. Gerischer and C. Tobias, VCH, Weinheim, p. 163 (1994).

Florida Solar Energy Center • November 1-4, 2005

Tendency of Complex Formation

- Increases with decreasing the size of the alkyl group:
 methyl(Me)>ethyl(Et)>propyl(Pr)>butyl(Bu)...
- Increases with decreasing the lattice energy of metal halide

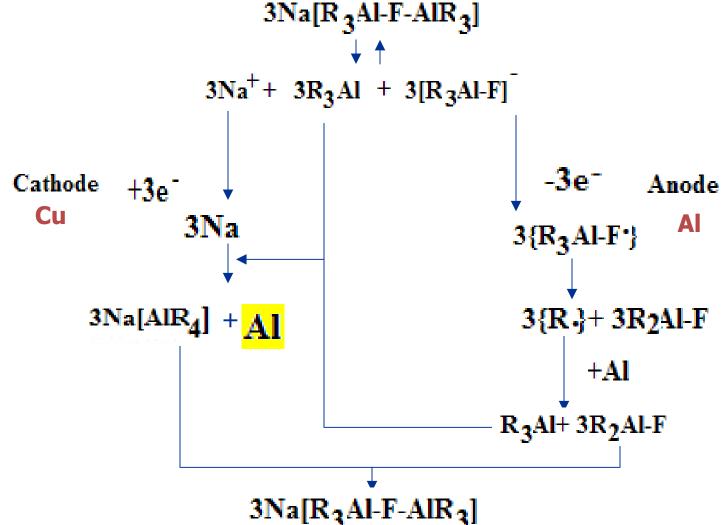
	F-	CI ⁻	Br-
Na ⁺	923	787	747
K ⁺	821	715	682
Rb ⁺	785	689	660
Cs ⁺	740	659	631

Lattice Energy (kJ/mol)

Florida Solar Energy Center • November 1-4, 2005

Electrolyte Properties

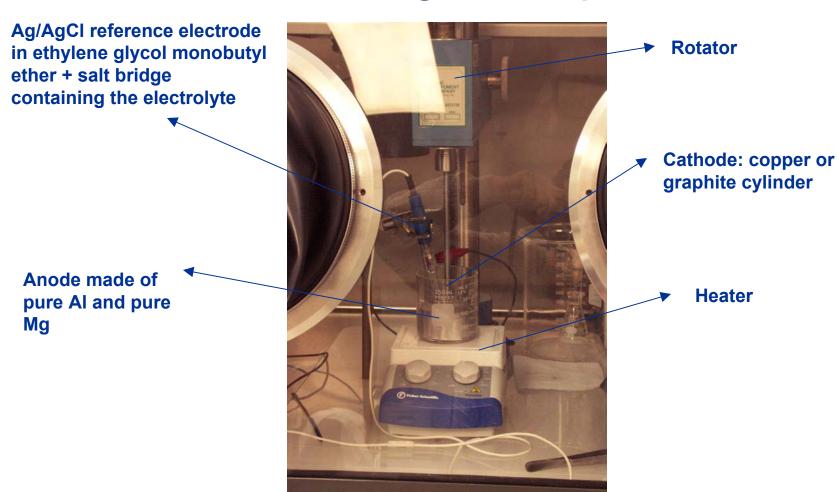
Compound	Melting Point (°C)	Specific Conductivity	
Na[Me ₃ Al-F-AlEt ₃]	65-68	18 (100°C)	
Na[Et ₃ Al-F-AlEt ₃]	35	23 (100°C)	
K[Me ₃ Al-F-AlEt ₃]	135-137	73 (150°C)	
K[Me ₃ Al-F-AlBu ₃]	25	8 (100°C)	
K[Et ₃ Al-F-AlEt ₃]	127-129	73(130°C)	



Florida Solar Energy Center • November 1-4, 2005

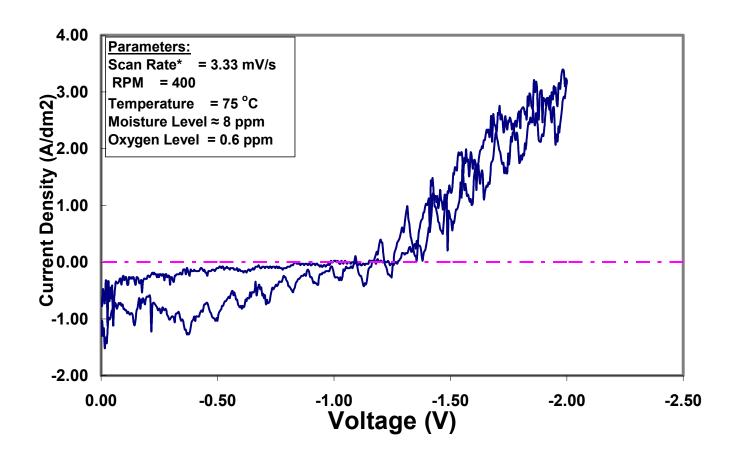
Mechanism of Electrodeposition of Al

Florida Solar Energy Center • November 1-4, 2005



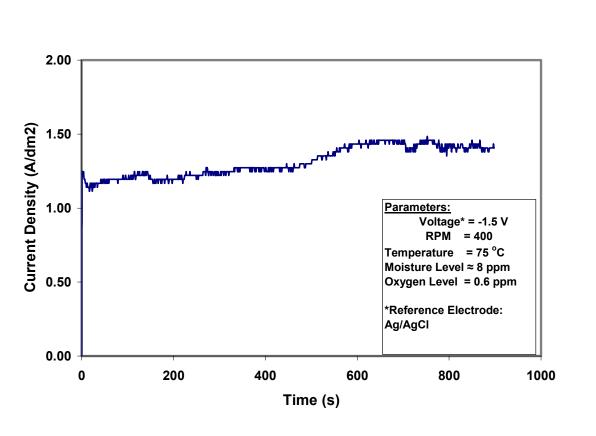
Florida Solar Energy Center • November 1-4, 2005

III. Cell Design and Preparation



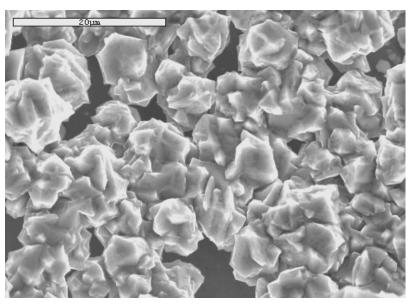
Florida Solar Energy Center • November 1-4, 2005

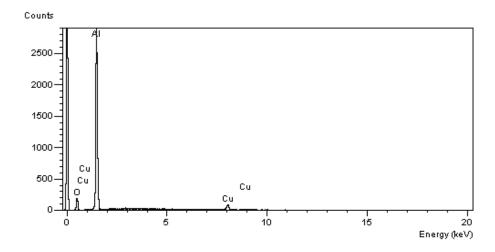
III. Cyclic Voltammetry



Florida Solar Energy Center • November 1-4, 2005

IV. Electrodeposition of aluminum





Florida Solar Energy Center • November 1-4, 2005

V. Characterization of the aluminum deposit

SEM

EDS

Florida Solar Energy Center • November 1-4, 2005

Future Plans

• We will establish the electrodeposition procedure for Al-Mg alloys during the months of November and December in 2005.

2006					
	1 st quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	
Establishing deposition parameters for nanocrystalline Al-Mg alloys	•	•			
Establishing conditions for controlling the composition of the alloys		•	•		
Structural Characterization of alloys	4			-	
Thermal stability			•	-	
Hydrogenation/dehydrogenation			•		